
COF-BASED HOLLOW FIBER MEMBRANES FOR VERSATILE CO₂-SELECTIVE SEPARATION

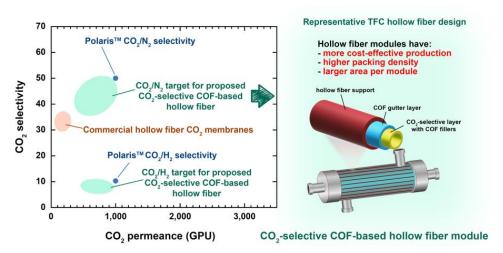
Abstract:

This project aims to design two-dimensional covalent organic frameworks (COFs) to develop a new class of COF-based CO₂-selective membranes for enabling competitive CO₂ capture. Potential applications are targeted at decarbonization efforts of Singapore's power sector, which include flue gas from the waste-to-energy (WTE) industry, and syngas for blue hydrogen production from the steam methane reforming (SMR) industry. The key novelties are: (1) leveraging two-dimensional amino-functionalized covalent organic frameworks (COFs) specially tailored as value-adding enhancers with high CO₂ affinity, (2) a new class of CO₂-selective layer for a high-performance thin-film composite (TFC) membrane design, and (3) the adaptation of hollow fiber configuration to offer separation versatility for different CO₂ gas pairs not seen in any commercial hollow fiber membranes thus far. Notably, the unique CO₂ selectivity of our TFC hollow fiber membrane arises from a two-pronged structural design, comprising a CO₂-selective layer on top of the CO₂-selective COFs. We proposed three work packages (WPs) to realize this design.

The first WP focuses on the development of CO₂-selective layer on a hollow fiber support using polyethylene oxide (PEO)-based materials via scalable coating techniques. The second WP will work on the design and synthesis of novel amino-functionalized COFs as CO₂-selective gutter layer and/or filler to augment WP1. When WP1 and WP2 amalgamate, the specially tailored COFs are expected to enhance the CO₂ affinity and molecular sieving effect of the PEO-based CO₂-selective layer to further elevate CO₂ permeance and induce high selectivity to both CO₂/N₂ and CO₂/H₂ gas pairs. Our third WP will be to demonstrate strong versatility under realistic mixed-gases testing conditions as proof-of-concept of our membrane design for decarbonizing the power sector. Start TRL is at 1-2 with expected TRL at 4 upon project completion.

CO₂ SEPARATION MEMBRANES

Covalent-organic frameworks (COFs) with pore size and chemistry optimized for CO₂ capture


PI: Wang Rong (NTU, SG)

Co-PI: Zhao Yanli (NTU, SG)

Collab: Lin Haiqing (U. Buffalo, USA)

Versatile thin-film composite membranes that can selectively separate CO₂ from both CO₂/N₂ & CO₂/H₂ gas pairs

Objective: Decarbonize Singapore's power sector