



**School of Electrical & Electronic Engineering** 

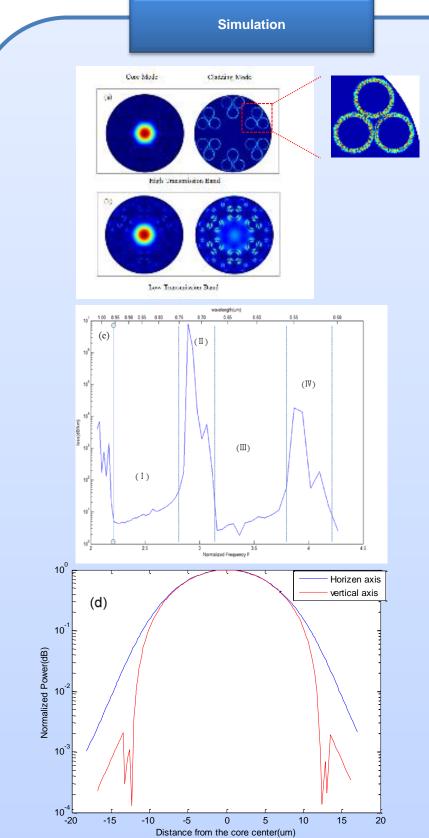
## High Power Silica Fibre Based Mid-IR Lasers

### Introduction

### Objectives:

- ➤ Design and fabricate loss low hollow core fibres for MidIR nonlinear applications
- ➤ Package hollow-core fibres for real applications
- ➤ Use hollow core fibre to convert NIR pump source to MidIR efficiently

### Novelty:


- ➤ Novel fibre design to achieve low loss in MidIR
- ➤ New fibre fabrication process
- ➤ New fibre package/interface

### Research Challenges:

- Loss mechanism of silica hollow-core fibre in mid-IR
- >Low-loss guiding for both pump and lasing wavelengths
- > Fabrication using local facility
- ➤ Interfacing/Packaging

# Home made stacking machine Stack capillaries Second step drawing

## Advantages: Less Rayleigh scattering Potential to achieve low loss Low nonlinearity Efficient for light gas interaction



Nature of the tube lattice fiber with split cladding. (a) The two columns show the hollow core mode and the cladding mode respectively for a frequency F=2.5 in band I. Inset: zoom in view of cladding mode, the fast intensity oscillation can be observed. (b) Same as in (a) for F=3 in band II. (c) Confinement loss of fundamental mode plotted as the function of normalized frequency  $F = \frac{2t}{\lambda} \sqrt{n_2^2 - n_1^2}$ . (d) Intensity profile of fundamental mode along the horizontal and vertical cross-section, respectively.

### **Project Members**

114um inner diameter fibre

Dr. LuanFeng, Asst Prof Seongwoo Yoo, Asst Prof Yong Ken Tye, Mr. Huang Xiaosheng, Mr. Dai Changchun, Dr. Gu Bobo Email: LUANFENG@ntu.edu.sg Tel: +65 67906439

2.5mm diameter cane

### **Acknowledgment:**

This work was supported by Singapore Ministry of Education (MOE) Academic Research Fund Tier 2 (MOE2011-T2-2-120) and Agency for Science Technology and Research (A\*STAR SERC1223600002).