COURSE OUTLINE: MH1812

Course Title	Discrete Mathematics				
Course Code	MH1812				
Offered	Study Year 1, Semester 1				
Course Coordinator	Gary Greaves (Dr) gary@ntu.edu.sg 6513 8652				
Pre-requisites	None				
Mutually exclusive	CE1001, CZ1001, MH1301				
AU	3				
Contact hours	Flipped Classroom: 13, Lectures: 13, Tutorials: 12				
Approved for delivery from	AY 2020/21 semester 1				
Last revised	13 Jun 2020, 16:46				

Course Aims

This course serves as an introduction to various topics in discrete mathematics. Familiarity with formal analysis through simple problems in some basic discrete structures is a key objective rather than knowing these structures in depth. Specifically, the main aim is to learn topics from the following broad areas of discrete mathematics: number theory, logic, combinatorics, and graph theory.

This course aims to provide students with a solid mathematical foundation and is intended for first year computer science and computer engineering students.

Intended Learning Outcomes

Upon successfully completing this course, you should be able to:

- 1. Identify which integers are congruent modulo a positive integer
- 2. Formulate, interpret, and manipulate logical statements
- 3. Identify valid and invalid arguments
- 4. Prove elementary mathematical results using various proof techniques
- Apply basic tools for counting
- 6. Solve linear recurrence relations
- 7. Identify two equal sets and provide justification that these sets are equal
- 8. Manipulate relations and functions between sets
- 9. Apply basic techniques in graph theory

Course Content

Elementary Number Theory: Types of numbers, Euclidean division, modular arithmetic, operator closure. Propositional Logic: Propositions, logical operators, compound propositions, truth tables, equivalent statements, De Morgan's laws

Propositional Logic: Logical equivalence laws, order of operations, arguments, inference rules.

Predicate Logic: Predicates, quantification, negating quantifiers, determining truth values.

Predicate Logic: Conditional quantification, inference rules. Proof Techniques: Direct proof, proof by induction

Proof Techniques: Proof by contradiction, proof by contrapositive. Combinatorics: Principle of counting, combinations, permutations.

Linear Recurrence Relations: Solving by backtracking, solving by characteristic equation. Set Theory: Sets, union, intersection, set difference, set equivalence, cardinality, power sets

Set Theory: Cartesian products, double inclusion.

Relations: Relations, relations on a set, reflexivity, symmetry, antisymmetry, transitivity.

Relations: Equivalence relations, partial orders, matrix representation, composition, ternary relations.

Functions: Functions, injectivity, surjectivity, bijectivity, inverse, composition

Functions: Floor and ceiling, pigeonhole principle, countable sets, Cantor's diagonal argument.

Graph Theory: Graphs, vertices, edges, subgraphs, multigraphs, directed graphs, Euler paths/cycles, Euler's theorem.

Graph Theory: complete graphs, bipartite graphs, handshaking lemma, adjacency matrix, Hamilton cycles, graph isomorphism.

Assessment

Component	Course ILOs tested	EAB Graduat Attributes test		Weighting	Team / Individual	Assessment Rubrics		
Continuous Assessment								
Mid-semester Quiz								
Short Answer Questions 1	1, 2, 3	a, c, e, j, l		25	individual	See Appendix for rubric		
Short Answer Questions 2	4, 5, 6, 7	a, c, e, j, l		25	individual	See Appendix for rubric		
Examination (2 hours)								
Short Answer Questions	1, 2, 3, 4, 5, 6, 7, 8, 9	a, c, e, j, l		50	individual	See Appendix for rubric		
		1	otal	100%				