Dynamic Portfolio Rebalancing

using Genetic Algorithm (GA) and Reinforcement Learning (RL)

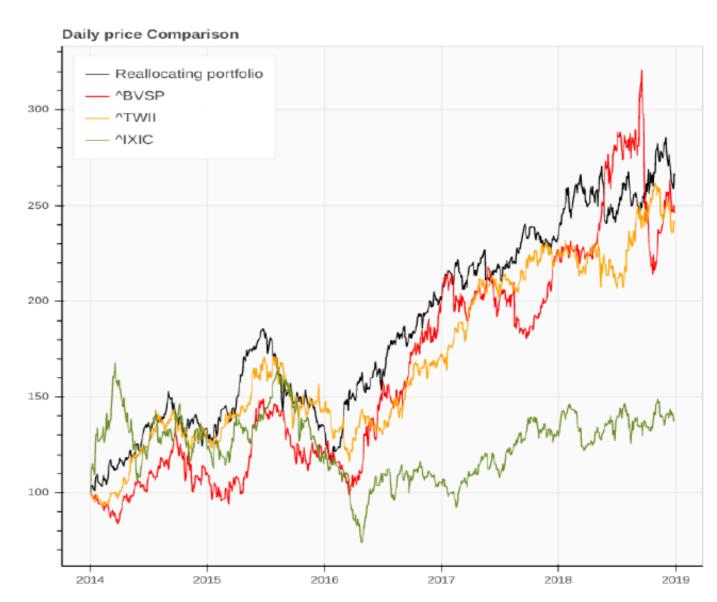
Student: Eddy Lim Qing Yang Supervisor: Assoc Professor Quek Hiok Chai

Project aim

- Improve portfolio management by introducing dynamic portfolio rebalancing which accounts for risk.
- Explore the effectiveness of dynamic portfolio rebalancing using a novel risk algorithm optimised by GA and by using a RL agent.

Areas of focus	
Computer Science	Finance
 Maximize portfolio returns – utilize market trends 	 Market risks – hedge against market risks Behavioural risks – Utilize different risk adversity based on market trends
Main Strategies Utilized	
Tactical Asset Allocation – Dynamic Portfolio Rebalancing	Strategic Asset Allocation – Controlled base rates with dynamic risk profile

Method 1: Genetic Algorithm


- 1. A novel risk algorithm takes account of the market conditions, risks and returns and determines portfolio composition in each market at each period for a group of markets.
- 2. Genetic algorithm is used to optimise parameters in risk algorithm unique to each market
- 3. Trend reversals in each period is determined by technical indicators and risk algorithm with optimised parameters is run per trend reversal

Method 2: Reinforcement Learning

- 1. A LSTM prediction model for stock prices is trained for the prices of individual markets
- 2. The LSTM predicted prices is used to reduce time lag on technical indicators to reflect true
- 3. Technical indicators used as state for Q-learning network
- 4. RL agent changes optimal portfolio composition per trend reversal

Results

- Able to display correct risk behaviours at correct market trends
- Able to reduce volatility of portfolio
- Able to outperform markets despite commission fees and reduce overall portfolio risk
- Effective in both global markets and individual stocks

Results

- Able to outperform markets despite commission fees and reduce portfolio risk
- Effective in global markets