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Introduction Experiment Results

One noticeable approach for combating Deepfake is Quantitatively, we successfully achieved improvements

to apply the model’s adversarial noise as a both on visual quality and protection performance.

watermark to the image so that when the image is Results Protection Performance Visual Quality

modified, it would be drastically distorted. Method Star [2] | Attention [3] | Att [4] | HiSD [5] | SSIM | SSIM Face
CMUA 1.0 0.9949 0.8496 | 0.9869 | 0.8897 0.9744

Q

Watermark Image + Watermark Distorted

. Our 0.9976 0.9998 0.8872 | 0.9990 | 0.8920 0.9851

Qualitatively, it achieves better visual effect in face,
resultlng in better V|sual quallty
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However, current works, e.g., CMUA [1] set the
adversarial noise threshold relatively high, making  Moreover, although with a little scarifies in the

the noise visible on human faces, impairing the distortion level, our method can deliver the required
image quality. Thus, the goal of this work is to dlstortlon to dlfferentlate modlfled images.

produce universal watermark with improved visual '
qguality, while still maintaining its protection

performance.

Challenge

There are two main challenge we face: Conclusion

1. Large parts of an image have a low tolerance for Noticing the visual quality defects in the watermarks,
noise. The noise allocated in these areas can we focus on improving visual quality while maintaining
easily become visible. protection performance. Experiments show that not

2. To ensure the desired protection performance, only have we managed to achieve better visual effect,
certain amount of noise must be allocated. but also, we are able to guard more images against

Method modification by exploiting the properties of JND.
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