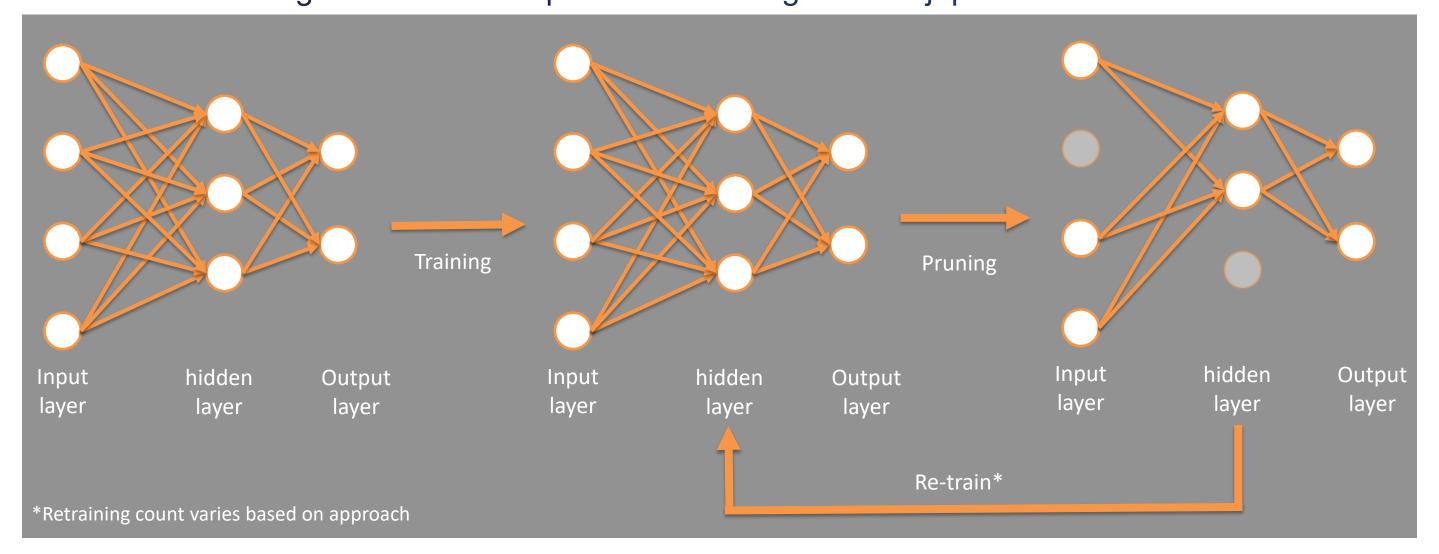
Pruning deep neural networks for encoding and decoding the human connectome

Student: Sean Tang

Supervisor: Prof Jagath C Rajapakse



Project Objectives:

The main focus of this project is to identify biomarkers of neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) in functional Magnetic Resonance Imaging (fMRI) scans. Deep learning models can be used to encode the human functional connectome and classify between healthy subjects and patients with diseases, followed by a decoding process to identify salient features used in the classification. However, fMRI datasets have much more features than data samples, causing models to overfit easily. Existing solutions involving pruning the neural network range from recursive feature elimination which is too slow to a one-shot pruning approach which prunes too harshly. Thus, this project will explore the viability of improved pruning methodologies to attain an improved, sparser architecture. This project also goes beyond existing work on pruning multi-layer perceptron (MLP) to propose pruning approach for convolutional neural network (CNN), which can take in dynamic functional connectivity (dFC) matrices, as well as graph convolutional network (GCN), which is a better fit for encoding functional connectomes. The pruning algorithms proposed can also generalise to non-neuroimaging datasets, which is demonstrated by applying them to datasets like MNIST, CIFAR-10 and the CORA dataset, suggesting applications beyond the initial scope defined by this project.

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 50)	1735850
dropout_1 (Dropout)	(None, 50)	0
dense_2 (Dense)	(None, 32)	1632
dropout_2 (Dropout)	(None, 32)	0
dense_3 (Dense)	(None, 32)	1056
dropout_3 (Dropout)	(None, 32)	0
dense_4 (Dense)	(None, 2)	66
activation_1 (Activation)	(None, 2)	0
Total params: 1,738,604 Trainable params: 1,738,604 Non-trainable params: 0		

Experiment	Brief description	
LEAN	Re implementation of LEAN algorithm	
Multiplier test	Test to confirm validity of LEAN architecture	
iLEAN	iterative approach of LEAN; prune from last hidden layer to	
	input, one layer per iteration, retraining in between each iteration	
Lottery ticket hypothesis	Test to show that reinitlaising the model's original weights	
	improves post pruned accuracy	
SiLEAN	Single iterative LEAN apporach; prne all hidden layers in the first	
	iteration, retrain, then prune the input layer in the next iteration	
CCNN (edges)	Adoption of LEAN methodology for CCNN architecture; prune	
	by the importance score of each edge in adjacency matrix	
CCNN (nodes)	Adoption of LEAN methodology for CCNN architecture; prune	
	by the summed importance score of each node in adjacency	
	matrix	
CLEAN	Mulit channel approach of CCNN; allows us to split a single	
	data entry into several discrete portions, retaining more temporal	
	information	
GCN	A graph convolutional network approach whereby we	
	incorporate both imaging data (fMRI) as well as non imaging	
	data (gender, age etc.).	