

QuickYOLO

Ultra-Low Power Real-Time Object Detection based on Quantized CNNs

Student: Chew Jing Wei Supervisor: Asst Prof Liu Weichen

Model	mAP@0.5	Inference Time (ms)	Peak Memory Usage (MB)	Speedup	Memory Use Reduction
YOLOv2	0.42	577.9	261.9	21.8X	15.3X
QuickYOLO	0.37	26.5	17.1		

Table 1: Experimental results on 224x224 inputs, generated from TFLite benchmarking tool on Jetson Nano using 4 threads.

Project Objectives

- YOLO-based objectdetection model, binarized input & weights
- 30 FPS on edge device
- Reasonable accuracy

Figure 1: Example predictions from QuickYOLO on the VOC2007 test set

Approach

Find and tweak existing YOLO projects in Python

Train binarized model using TensorFlow & Larq

Export using TensorFlow Lite & Larq Compute Engine

Write a demo program in C++ with OpenCV for camera input

