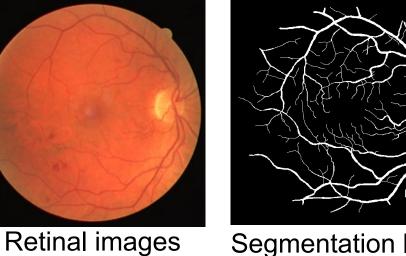
Attack on Training Effort of Deep Learning

Student: Chan Wen Le Supervisor: Prof. Liu Yang

Motivation

Retinal vessel segmentation is key to diagnosis of ocular diseases. However, the current approaches have 2 limitations:

Small number of annotated images available


Overfitting + Overtraining. Limited generalisation performance to unseen images

Dataset are all of high quality fundus images

Limited performance on common low-quality fundus images and ill-crafted adversarial examples


Contributions

Demonstrate the effect of limitations and vulnerability of DNNs through proposing 2 adversarial attack methods

Pixel-wise Attack

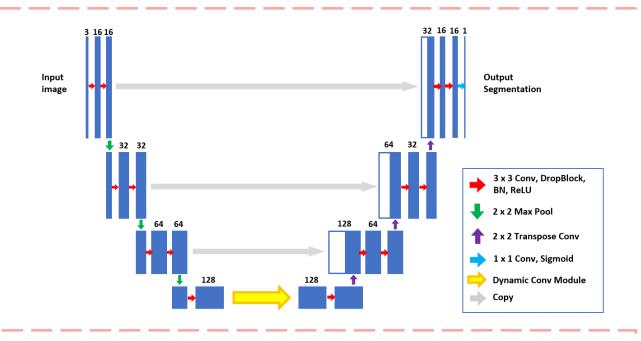
Apply a Light-Enhancement curve iteratively on each pixel's illumination

11% decrease in Accuracy, 0.26 decrease in sensitivity

Threshold-based Attack

Create non-uniform illumination through disproportional change in different region's illumination

6% decrease in Accuracy, 0.64 decrease in sensitivity


High attack success rate revealed that realistic illumination pose a potential threat to current DNN approaches

Improve current network by adding Dropblock and Dynamic Convolution on U-Net backbone

New Network Architecture

Increase robustness of automated retinal

vessel segmentation

Adversarial Training

Min-Max formulation: Use inner loop to generate adversarial examples and outer loops to train model using generated examples

Higher segmentation performance on adversarial examples and synthesised lowquality images