Investigating effects of viewing angle and stimulus interferences on Covert SSVEP

Student: Lee Jun Cong **Supervisor:** Prof Guan Cuntai

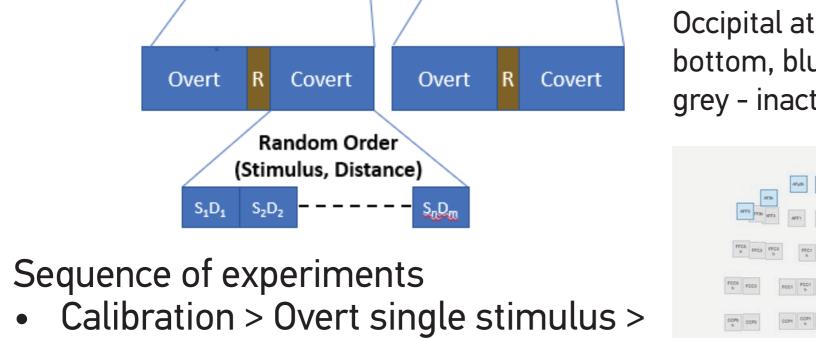
Background:

Traditional BCIs are not widely used due to limitations such as usability and practicality

Research gap of traditional SSVEP

- Research done on multi-tasking of SSVEP did not include covert attention in the experiments hence results only applicable when all tasks are in overt attention which are unlikely in real world situations
- Peripheral view attention is more practical than overt attention but significantly less research done

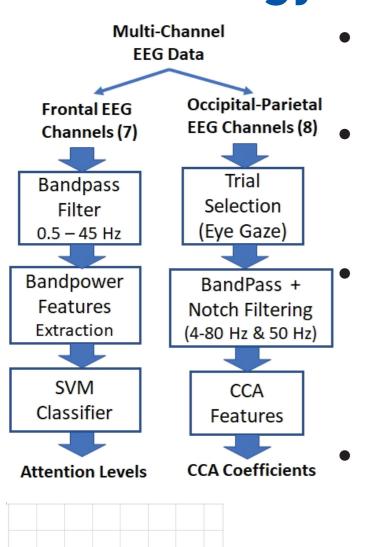
Experiment Design:


- SSVEP interface stimulus frequency
 - 5,10,15, 20-degree view angles
 - Overt, Covert with/without distractions
 - Stimulus frequencies in 6.67 8.57, 12 & 15 Hz
- Synchronized EEG and eye tracker recordings and chin rest to keep distance constant

Single Stimulus

Desktop Eye Tracker Dry EEG Headset

Electrode Positions (Frontal at the top, Occipital at the bottom, blue - active, grey - inactive)



Multiple Stimuli

- - Covert single stimulus > Overt Multiple stimulus > Covert multiple stimulus

Methodology & Analysis

23

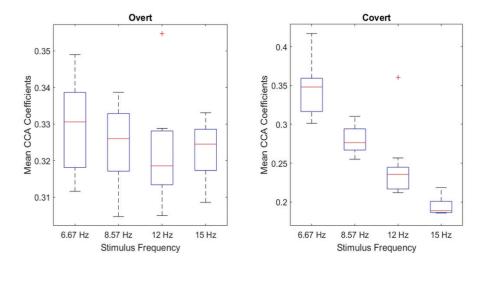
- Channels are separated into frontal and occipital channels
- SVM classifiers used to get attention levels from frontal channel input and CCA for occipital channels
 - Pre-processing of EEG signals by normalizing (mean zero & unit variance), notch (50Hz) and bandpass (4-40 Hz) filtering
- Eye tracker data to determine quality of data of each trial, data is evaluated manually
- Trials where users gaze are centered at intended target are accepted

Research Goal:

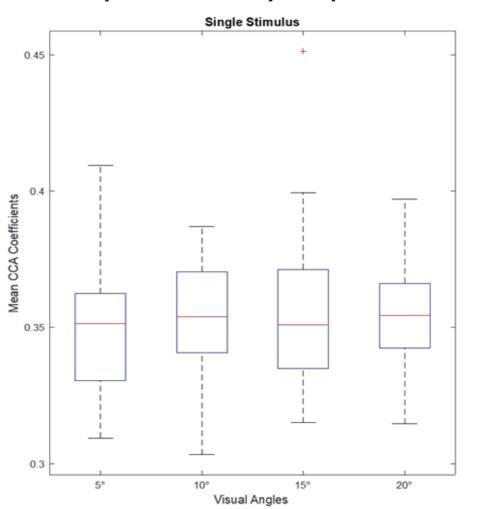
Original Hypothesis

- Covert SSVEP will perform worst the larger the viewing angle
- Non target distractions cause worst performance
- Overt SSVEP and Covert SSVEP reaction to stimulus distractions

Objectives


To find out and evaluate the relationship between viewing angle and non-target stimuli distractions in covert SSVEP

Results & Discussion:


CCA Analysis

We compared the CCA coefficients between overt and covert SSVEP

Overt SSVEP performs the same at every frequency regardless of distraction and view angle

- Covert SSVEP performs better at lower frequencies
- Shorter data segment length achieve reliable SSVEP responses in peripheral visual attention

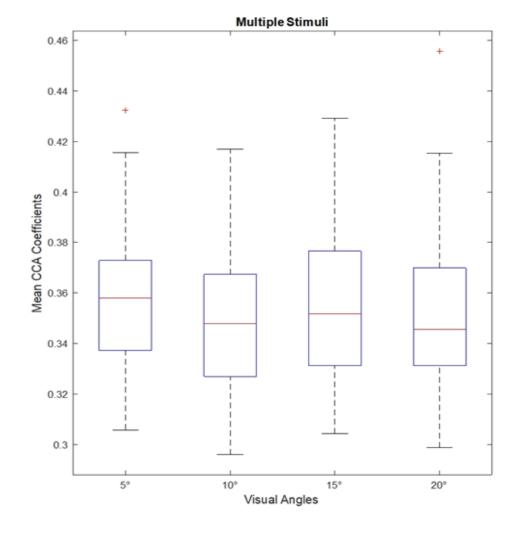


TABLE I

Comparison of different experiment scenarios across visual ANGLES USING CCA COEFFICIENTS [** INDICATES SIGNIFICANT DIFFERENCE AT p < 0.001 Level and * at p < 0.05]

visual angles	5°	10°	15°	20°
Single-stimulus(C vs O)	**.	**	**	**
Multi-stimuli(C vs O)	0.32	*(0.03)	0.06	0.21
Single Vs Multi (O)	**	**	**	**
Single Vs Multi (C)	0.16	0.33	0.86	0.55

- Performance in covert attention not affected by viewing angle in our study
- Conversely, overt attention single stimuli are affected by viewing angle as shown in the table