Annexe A: New/Revised Course Content in OBTL+ Format

Course Overview

Course Over view	
Expected Implementation in Academic Year	AY2018-2019
Semester/Trimester/Others (specify approx. Start/End date)	Semester 1
Course Author * Faculty proposing/revising the course	Lee-Chua Lee Hong
Course Author Email	clhlee@ntu.edu.sg
Course Title	Advanced Steel Design
Course Code	CV4102
Academic Units	3
Contact Hours	39
Research Experience Components	Not Applicable

Course Requisites (if applicable)

Pre-requisites	CV3012 Steel Design
Co-requisites	
Pre-requisite to	
Mutually exclusive to	
Replacement course to	
Remarks (if any)	

Course Aims

To develop deeper understanding and greater capability in structural steelwork design based on limit state principles. The materials covered in the course enable you to familiarize with EC3 and essential part of EC4 for the design of steel structures in practice.

Course's Intended Learning Outcomes (ILOs)

Upon the successful completion of this course, you (student) would be able to:

ILO 1	Analyze and design moment connections to EC3, and composite design of beams and slabs in accordance with EC4.
ILO 2	Perform plastic analysis and design of steel beams, and rectangular and portal frames.
ILO 3	Apply elastic and plastic design to multi-storey rigid frames, with distinction between sway frames and non-sway frames.
ILO 4	Perform complete design of single-storey building integrating the design of various members and frames.
ILO 5	Analyze and design complete plate girder in accordance with EC3.
ILO 6	Incorporate buildability, serviceability and maintainability plans in the design.

Course Content

S/N	Торіс
1	Behavior and design of circular and rectangular hollow sections
2	Behavior and design of bolted and welded moment connections
3	Behavior and design of multi-storey rigid frames
4	Behavior and design of plate girders
5	Plastic analysis and design of beams, and rectangular and portal frames

Reading and References (if applicable)

Reading

- 1. Darko Beg et. al. "Design of Plated Structures Eurocode 3: Design of steel structures: Part 1-5-Design of plated structures", ECCS and Ernst & Sohn, 2010. Available as e-Book at NTU library [TA684.DA457sf].
- 2. Wardenier, J. "Hollow Sections in Structural Applications" Bouwen met Staal, 2002 (free download at http://www.cidect.com).

References

- 1. Trahair NS et. al. "The Behavior and Design of Steel Structures to EC3", 4th edition, Taylor and Francis, 2007 [TA684.T765 2008].
- 2. Leroy Gardner and David A. Nethercot "Designer's guide to Eurocode 3: Design of Steel Building, EN1993-1-1, 1-3 and 1-8 Available as e-Book at NTU library: XX (792751.2).
- 3. Packer, J.A., Sherman, D. and Lecce, M., "New Design Guide for Hollow Structural Section Connections", American Institute of Steel Construction, 2010 [TA 684.P119 2010].

Planned Schedule

Week or Session	Topics or Themes	ILO	Readings	Delivery Mode	Activities
1	Behavior and design of circular hollow sections	1,6			Lectures/ Tutorials
2	Behavior and design of rectangular hollow sections	1,6			Lectures/ Tutorials
3	Behavior and design of moment connections	1			Lectures/ Tutorials
4	Behavior and design of bolted and welded connections	1			Lectures/ Tutorials
5	Behavior and design of multi- storey rigid frames	3			Lectures/ Tutorials
6	Approximate analysis, stability and P-Delta effect of frames	3			Lectures/ Tutorials
7	Consultation for 1st design assignment. Behaviours and actions of plate girders	5			Lectures/ Tutorials
8	Resistance to bending and shear of plate girders	5			Lectures/ Tutorials

Week or Session	Topics or Themes	ILO	Readings	Delivery Mode	Activities
9	Design of stiffener and end post	5			Lectures/ Tutorials
10	Complete design of plate girders Consultation for 2nd design assignment	5,6			Lectures/ Tutorials
11	Plastic analysis and plastic hinge	2			Lectures/ Tutorials
12	Theorems of plastic analysis Plastic analysis of rectangular frames	2,4			Lectures/ Tutorials
13	Plastic analysis of portal frames and ICR	4,6			Lectures/ Tutorials

Learning and Teaching Approach

Approach	How does this approach support you in achieving the learning outcomes?
Lectures	Weekly lectures to enable you to have the necessary knowledge to achieve the learning outcomes
Tutorials	Weekly tutorials to get you to practice and hone your ability to achieve the learning outcomes
Assignments	Discussions and consultations initiated by you on your needs to perform and achieve the learning outcomes

Assessment Structure

Assessment Components (includes both continuous and summative assessment)

No.	Component	ILO	Related PLO or Accreditation		Description of Assessment Component		Rubrics	Level of Understanding
1	Summative Assessment (EXAM): Others([final examination])	1- 6	a, b, c, d, g	60		Individual	Holistic	Relational
2	Continuous Assessment (CA): Others([assignments (e.g. term paper, essay)] Assignment – Design of Grandstand Stadium Roof)	1-4	a, b, c, d, e, g, j, l	20		Individual	Analytic	Multistructural
3	Continuous Assessment (CA): Others([assignments (e.g. term paper, essay)] Assignment – Design of 3-span Plate Girder)	5- 6	a, b, c, d, e, g, j, l	20		Individual	Analytic	Multistructural

Description of Assessment Components (if applicable)						

Formative Feedback

- ${\bf 1.}\, Feedback\, will\, primarily\, be\, through\, discussions\, when you\, embark\, on\, your\, two\, design\, assignments.$
- 2. Additional discussions during tutorials and through consultations initiated by you on your particular learning needs.

NTU Graduate Attributes/Competency Mapping

This course intends to develop the following graduate attributes and competencies (maximum 5 most relevant)

Attributes/Competency	Level
Decision Making	Intermediate
Problem Solving	Intermediate
Project Management	Intermediate
Design Thinking	Intermediate

Course Policy

Policy (Academic Integrity)

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values. As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the academic integrity website for more information. On the use of technological tools (such as Generative Al tools), different courses / assignments have different intended learning outcomes. Students should refer to the specific assignment instructions on their use and requirements and/or consult your instructors on how you can use these tools to help your learning. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Policy (General)

As a student of the course, you are required to abide by both the University Code of Conduct and the Student Code of Conduct. The Codes provide information on the responsibilities of all NTU students, as well as examples of misconduct and details about how students can report suspected misconduct. The university also has the Student Mental Health Policy. The Policy states the University's commitment to providing a supportive environment for the holistic development of students, including the improvement of your mental health and wellbeing. These policies and codes concerning students can be found in the following link.

http://www.ntu.edu.sg/SAO/Pages/Policies-concerning-students.aspx

Policy (Absenteeism)			
Policy (Others, if applicable)			
0			

Last Updated Date: 21-11-2025 11:38:40

Last Updated By: YANG En-Hua

Rubrics for CV4102 Advanced Steel Design

Appendix 1: Assessment Criteria for Design Assignments 1 and 2

	Performance Level/Criteria								
Weighting	Performance Indicators	Outstanding: 4	Good: 3	Average, meet expectation: 2	Below expectations: 1				
Technical Knowledge (70%)	Identify appropriate design factors, parameters and apply design code	Correct design factors and parameters used in design	Some inaccurate design factors and parameters used in design	Some incorrect design factors and parameters used in design	Many incorrect design factors and parameters used in design				
	Apply correct design principles and methodology	Correct principles and methodology applied in design	some incorrect principles and methodology applied in design	Many incorrect principles and methodology applied in design	Design based on incorrect principles and methodology				
Creativity and Innovativeness (20%)	Propose cost- effective designs which meet client requirements	Design is cost effective, meets client requirements, creative and innovative	Design is generally cost effective and meets client requirements	Design is lacking in cost effectiveness and in meeting client requirements	Design is not cost effective and does not meet client requirements				
	Consider socio- economic and buildability in design	Design pays much attention to socio- economic and environmental sustainability	Design pays sufficient attention to socio- economic and environmental sustainability	Design pays little attention to socio- economic and environmental sustainability	No consideration for socio- economic and environmental sustainability in design				
	Consider practicality of project implementati on	Proposed design can be readily and practically implemented	Proposed design can be implemented with some challenges	Proposed design can be implemented with great difficulties	Proposed design cannot be implemented				
Technical Communication (10%)	Technical Drawing	The technical drawing communicates the design details and concepts clearly and professionally	The technical drawing has the design details and concepts. There are several minor mistakes in the drawing which affects the clarity.	The technical drawing has the main design details and concepts and is comprehensible. However, there are quite a number of mistakes in the drawing.	There was no technical drawing OR that the technical drawing is unintelligible or plagiarised				